
111 

Acta Cryst. (1958). 11, i l l  

A P h a s e - D e t e r m i n i n g  Procedure Related to the Vector-Coincidence  Method 

BY PHILIP A. VAVGHAN 

School of Chemistry, Rutgers, The State University, New Brunswick, N.J. ,  U.S.A. 

(Received 14 November 1955 and in revised form 13 June 1957) 

It is shown that one form of the vector-coincidence method is approximately equivalent to a 
probable calculation of certain origin-invariant products of structure factors. Equations are 
developed in detail for space groups P i  and P1, and their validity is investigated both theoretically 
and by a numerical test. 

Introduction 

At the present time, two general methods for solving 
crystal structures from diffraction intensities are 
undergoing rather extensive investigation. Methods 
are being developed by means of which the phases of 
structure factors might be found directly, and tech- 
niques for obtaining an approximate structure from 
the Patterson function are being used. Harker & 
Kasper (1948) derived a set of inequalities which has 
been extensively developed by later investigators and 
which can often be used for direct phase determination. 
A general method for sign determination which is 
based on probability theory has been presented by 
Hauptman & Karle (1953) and the results of these 
authors have also been derived by Bertaut (1955). 
General methods for solving the Patterson function 
seem to have occurred almost simultaneously to 
several crystallographers (Beevers & Robertson, 1950; 
Buerger, 1951; Clastre & Gay, 1950; Garrido, 1950; 
McLachlan, 1951). I t  is the purpose of this paper to 
show that  the Patterson-superposition (vector-coin- 
cidence) procedure (Buerger, 1951) can be developed 
in a manner which yields probable phase-determining 
relations between certain products of structure factors 
and the set of structure-factor moduli. This general 
approach has been used by McLachlan & Harker 
(1951). However, the equations presented by these 
investigators require the initial location of one atom. 
It  will be seen that  this is not necessary in order to use 
the equations presented here. 

Distr ibut ion functions 

We introduce distribution functions defined by 

Dn(ul, us, . . . ,  u.) 

= I Q(r)~(r+ul)Q(r+ue) '" .~(r÷u~)dvr.  (1) 
cell 

These functions are atomic distribution functions for 
n÷  1 atoms in the sense that they have maxima when 
Ul, u s . . . .  , un are vectors connecting an atom with n 
other atoms. We can expand D~ in a Fourier series: 

Dn(ul, us, . . . ,  un) -- 

~ v  F H j  F - - H 1 - - H  2 . . . . .  H n 
Hl ,  H2, . . . , H  n ] 

× exp [ - 2 ~ i ( H l . u l + H e . u e + . . .  +H,~.un)] (2) 

in which FH1 is the structure factor associated with 
the reciprocal-lattice point H1, etc. The volume unit 
is taken, for convenience, to be one unit cell. 

It  is obvious that  D O = F000 and that  Dl(Ul) is the 
Patterson function. It  should also be noted that the 
Fourier coefficients of all D, are independent of the 
choice of origin of ~)(r), but that D~ for n _> 2 is cen- 
trosymmetric only if Q(r) is centrosymmetric. 

Most vector-coincidence methods (Buerger, 1951) 
amount to the construction of a D, (or sections through 
one of these functions) for n _ 2 from the Patterson 
function. We will consider product functions for n 
superposed Patterson functions of the form 

Qn(ul, us, . . .un) = / I  P ( u j )  H P(uj-uz.) . (3) 
j = l  k < j  

These functions differ from the product functions 
defined by Buerger (1951) in that  factors are included 
which are the values of the Patterson function at the 
ends of the displacement vectors, u j - u  k. It  is clear 
that  Q~ is large whenever Ul = r j - rk ,  us = r l - rk ,  etc., 
or when u I = rk--r], u 2 = rk - r t ,  etc., rj, rk, rz, etc. 
being atomic-position vectors. The similarity between 
D~ and Qn is therefore obvious. We will consider the 
possibility of comparing the Fourier coefficients of the 
functions D e and Qe. Now Qe always has a center of 
symmetry whereas D e has a center of symmetry only 
if ~ (r) is centrosymmetric. We will consider both cases 
but we will not take explicit account of any other 
symmetry elements. 

Centrosymmetr i c  s tructures  

A Fourier coefficient of D2(Ul,  u2) is FH1FH~FHI+H2, 
and the corresponding coefficient of Q2(ul, u2) is 

2 2 2 
~ F H I + K / V H 2 _ K F  K. It  is clear that one cannot gain 
K 
information by comparing these quantities since the 
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lat ter  is always positive. The situation can be im- 
proved by considering the two par t icular ly  large 
differences between D 2 and Q2. (i) The peak at the 
origin of Q2 is too large, and (ii) the special peaks on 
Q2 for which u 1 = 0, u~ = 0, or u 1 = u 2 are too large 
relative to the general peaks. Both of these discrep- 
ancies can be el iminated on the average by ad jus tment  
of the origin peak of P(u)  and by removing the peaks 
at the origins of both D 2 and Q2. In  accordance with 
these ideas, we will consider the possibili ty of making 
the following approximate  equal i ty:  

N 
EI_I1EH2EHI + H2 __ __~ g3 

.i=l 

~ , A  2 (EH~+K-- 1 +B)  (E~I~-K-- 1 +B)  ( E ~ -  1 + B ) K - A B  ~ 

(4) 

In  this expression, the left side corresponds to a 
Fourier  coefficient of D~ and the right side corre- 
sponds to the same Fourier coefficient of Qe to which 
the changes indicated above have been made. The 
constant  B is essentially an ad jus tment  to the origin 

N 
peak of P(u) ,  A is a normalizing constant, and ~ g~. and 

A B  ~ are terms which remove the origin peaks of the 
corresponding functions (or, in other words, they 
make the average values of the left and right sides of 
the above expression equal to zero). Also, the sum in 
the Fourier coefficient of Qe has been replaced by an 
average and the result has been expressed in terms of 
the normalized structure factors EH defined by 

A P H A S E - D E T E R M I N I N G  P R O C E D U R E  
-y 

LH1, H2 = EHIEH2EHI+H~ - ~--" g3,  (6) 
/=1 

MH,, H~ = (E~II+K-- 1) (E~2_K-- 1 ) ( E ~ -  1)K, (7) 

with 

and 

N 
EH = Z gs exp [2~iH. r / ] ,  

]=1 

/ iv \.,} ') g) = f i  

N = number  of atoms per unit  cell. 

We have now to consider the best values for the 
constants A and B. Since equation (4) is presumably  
to be used to determine the sign of EHIEH2EHI~Hv 
A and B should be chosen such tha t  the right side of 
this expression has the same sign as the left for the 
largest par t  of the region of the atomic configuration 
space for which EH~EH~EHI+H2 has a given fixed 
magnitude. Since solving this problem does not seem 
to be practicable,  we will seek the values of A and B 
which minimize the square of the difference between 
the r ight  and left sides of equation (4) integrated over 
the entire configuration space of the atoms. In  other 
words, we treat  this  as a regression problem. The 
quan t i ty  which is to be minimized can be ~Titten 

(72 = (LH1, H 2 -- A MH1, H2 -- A BNH, ,  H~ -- A B2PHI, H2)2, (5) 

in which the bar indicates integration over the space 
coordinates of all r]. In  the above equation, 

NHI, H~ = ( E h I + K - - 1 ) ( E K - - 1 ) + ( E h ~ - K - - 1 ) ( E ~ - - I )  

~" , (s)  -4- ( E H I + K - -  1 ) (E~I2_K -- 1 )K 

PH,,H~ = (E~I,+K--1)+(Eh~-K--1)+(EK--1) '¢" (9) 

In  f inding the values of A and B which minimize a2, 
the term AB2PH~,H2 on the right side of equation (5) 
will be neglected. I t  will be shown later tha t  this is 
a reasonable approximat ion in cases for which the 
derived expression can be expected to give useful 
results. Minimizing a2 gives 

2 A = LH1 ,H2MH1, H2/MH1, H2 , 
and 

since 
LH~, H2 / N2  B = NHI, H 2 HI, H2 , 

(10) 

(11) 

MHx,  H2NH1, H2 = 0 . 

In  these expressions the bars over the symbols indicate 
tha t  the corresponding functions are averaged over all 
atomic coordinates. Evaluat ion of these averages gives 

LH1, H~MH1, H2 ---- 8 S ~ - 3 6 S 6 S 3 + 4 0 S 9 ,  (12) 

2 n1~ - 1  
MH1, H 2 - -  (64S~ - 336SsS 4 + 416S12) 

nK 

1 
+ - - ( 8 - 3 6 S 4 + 5 4 S ~ - 2 7 S ~ )  , (13) 

LH1, H2/VH1, H~ : 12S4S3 - 21S 7 , 

2 nK-- l (24S~ - 45Ss) 
- / ~ H 1 ,  H 2 - -  

nK 

1 
+ - -  (12 - 36S 4 + 27S~), 

nK 

(14) 

(15) 

in which n K is the number  of terms used to compute 
the averages over K in equations (6)-(9), and 

x 

s,, = 2:g7. 
)=1 

In the case 0f equal atoms, S ,  = N -''/,'-~ 
In deriving these expressions it has been assumed 

tha t  the space group is P1 and tha t  all atoms are in 
general positions. Similar expressions can be derived 
for other space groups. In general these will be con- 
siderably more complicated, most ly  because the aver- 
age values of the products of structure factors will be 
different for various classes of reflections. 

An idea as to the magni tudes  of A and B and their  
approximate  dependance on the number  of atoms in 
the unit  cell can be gained by evaluat ing these quan- 
tities under the conditions tha t  (i) all atoms are equal, 



P H I L I P  A. V A U G H A N  

(ii) nK is infinite, and (iii) only terms of lowest order 
in 1/N are kept. Then, A =~-N ~/~, and B = 4 / N .  
These expressions are approximately valid for moder- 
ate N and 8 n  K >~ N 3. 

I t  is clear that  if the signs of enough EH~EH~EH~+H~ 
could be determined from equation (4) one could 
proceed to the solution of a structure problem. The 
signs of even structure factors are obtained directly 
(by putt ing H~ = H2) and the signs of three structure 
factors of different origin classes can be chosen ar- 
bitrarily. Since the various EH~EH~EH~+I~ are not in- 
dependent, the signs of these quantities give an over- 
abundance of data. Furthermore, ~ of Hauptman 
& Karle (1953) can be used when enough signs are 
known. 

T h e  n o n - c e n t r o s y m m e t r i c  c a s e  

In this case, P(Ul)P(u2)P(u2-ul) has a center of 
symmetry  whereas D2(u~, u2) does not. Hence the 
former function is to be compared with D~(u 1, u2) 
+D* (u 1, u2),~ which has Fourier coefficients 
FH~FH~F-H1-H~+F-H~F-H~FHI+Hv If we proceed in 
the manner similar to that  described for the centro- 
symmetric case we obtain 

x 

EH1EH2E_H~_H~ + E_H1E_H2EHI+He -- 2 ~__7 g~ 
]=1 

A (]EH~+K[ ~ -  1 +B)(IEH~_K] 2 - 1  + B )  

( [ E K [ 2 - 1 + B ) K - A B  3 . (16) 

Again, (neglecting the term containing AB e ) the values 
of A and B which minimize 0.2, the mean square 
deviation between the left and right sides of this ex- 
pression, are given by equations (10) and (11). However, 
in this case we have 

LH1, H2MH1, H2 --= 2 S 3 -  6S6S3 + 4S9, (17) 

M~,  H2 -- n~,~-- I (2S~_6SsS4+4S~2) + 1 ( 1 _ S ~ ) 3  , (18) 
nK nK 

LH1, H2NH1, H2 = 6SaS4- 6S7 , (19) 

3 nK - 1 (3S~_3Ss) + __ (1 -$4)  2 (20) N H 1 ,  H2 - -  
nK nK 

These equations are strictly correct only for space 
group P1. If all atoms are equal, n1~ >> N 3, and we 
keep only the term of lowest order in I/N, we obtain 
A = N 3/2 and B = 2/N. 

I t  will now be demonstrated that,  if the values of 
EHxEH2E-H~-H2 +E-H~E-H2EH~+H2 determined by the 
above equation are sufficiently precise, the phase 
angles of the structure factors can be determined. We 
first note tha t  

t The  symbol  * in this case refers to the inver ted  s t ruc ture .  
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COS (p[-I1 , H 2 = COS (~I-I1 ~- ~l-I2 - -  ~ H I + H 2  ) 

= ½ (EH1EH2E-HI-H2 + E-H1E-H2EHI+H2) (21) 
]EH1EH2E_HI_Hz I 

in which ~ is a phase angle. This gives u s  I~H1, H2[ , 
in which we take - ~  < ~H~,H2 --< ~. Now the sign of 
one ~H~, H2 can be arbitrarily assigned; this makes the 
choice between D~ and D*, which is also the choice 
between ~ and ~*. Furthermore,  the phase angles of 
three structure factors belonging to different origin 
classes may be arbitrarily assigned (Hauptman & 
Karle, 1956). We also note tha t  the various ~orh, H2 
are not independent; for example 

~H1,Hl+(~O2H1, H2-}-92H1_i_H2, _HI+~O__H1, H I + H  2 = 0 ,  (22) 

and 

~9H1, H 2 + ~0HI+H2, H1--H 2 -}- (P--H 1, H2--H1 + (~--2Hl+H2, --H2 = 0 . 

(23) 

These relations involve the phase angles of just seven 
structure factors, two of which may be assigned 
arbitrarily. I t  is clear tha t  we may, in favorable cases, 
find the phase angles which give the best agreement 
for the ~VH~,H2 involved and which also best satisfy 
(22) and (23). 

E s t i m a t i o n  o f  e r r o r s  

Equations (4) and (16) are probable relations. Some 
idea of their reliability can be obtained from the mean 
square deviation given by equation (5). If this ex- 
pression is expanded we obtain 

0. 2 ---- 2 LH1, H2+A2M'~I m+A2B2N'~I m 

- 2A LHi, H2MH1, H 2 

--2ABLHI, H ~ N H ~ , H ~ + 3 A 2 B ~ ( ~ K )  ~ . (24) 

With A and AB given by equations (10) and (11) 
this becomes 

LH1,  H 2 M H 1 ,  H 2 LH1 ,  H 22VH 1, H 2 2 2 
0.min. ---- LH1, H 2 -  2 2 MH1, H2 N H 1 ,  H2 

+3A2B4(E-- - K) (25) 
in which we evaluate 

/H1,  H2 1 + 3S~-  7 S  6 , (26) 

• ~--7-7K e 2 -3S4  
( E ~ , - 1 )  = -  (27) 

nK 

for the centrosymmetric case; and 

L~I1, H2 = 2 + 6 S a -  8 S  6 , (28) 

(IEKI2-- 1K) e -  ]--~t4 (29) 
nK 

for the non-centrosymmetric case. The other quantities 
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appear ing in equat ion (25) are given by  equations (12), 
(13), (14), (15), (17), (18), (19), and (20). Insight  into 
the above expression for e atom. can be obtained by con- 
sidering the case of equal a toms and by keeping only 
the  terms of lowest order in 1IN in the expressions for 

L~I, H~, LH~,H~MHI, H~, etc. We then have the ap- 
proximat ion,  valid for large N and n~, 

1 6 
1 O'min. ~ - -  1 + Na/8nK -- N(1 +N~/2nx) 

24 (1 +Na/8n~) ~ 
+ (30) 

nKN(1 +N~/2n~) ~ 

for the  centrosymmetr ic  case. I t  is obvious tha t  if we 
are to have  am~,.~ significantly less than  uni ty  (or 

L~,H~) we must  not  have  the condition Ns>> 8n~. 
On the other  hand,  for large nK ( ~  100) and moder- 
ate  N (---10), the last  te rm in this expression is 
cer tainly small compared to unity.  This justifies the 
neglect of this te rm in determining A and B which 
minimize a ~, since conditions which cause this te rm 
to become significant are just  those conditions under 
which the  whole procedure would fail. 

The conditions are similar in the non-centro- 
symmetr ic  case. The expression corresponding to 
equat ion (30) is 

2 12 9 o'~=. ~ 2 -- 
1 + Na/2nx " N  (1 +.N~/na) 

48 (1 + NS/2n~:) ~" 
+n~:N(l +N~/nx) ~" (31) 

The condition for failure in this case is N a >> 2n~.. 
An impor tan t  consideration is the behavior of 2 O'min. 

as ng-+ ~ .  For  equal atoms, and on expanding (25) 
in a power series in I/N, the asymptot ic  value of (Xmin. 
becomes 

l ima~" 0.75 1.313 0.794 ( 1 )  
nK--->oo mm. ~-- N - -  N - - - - - -~  - -  N -------~ -}- 0 ~-~ ( 3 2 )  

for the centrosymmetr ic  case, and 

lim 2 (rmi,. = 0 (33) 
nK--->co 

for the non-centrosymmetr ic  case. If  the atoms are 
not  equal, the limiting values of amid. ~ will be larger than  
these. 

I f  we let G be the numerical  value of the function 
used to est imate EH~EH~EHx+m (centrosymmetric case), 
then the probabil i ty t ha t  these quanti t ies have the 
same sign as given by 

P+ = ½+½ tanh([GI'EH1EH~EH~+H~[) , (34) 

provided tha t  EHIEH.zEHI+H 2 is normally distr ibuted 
about  G with variance a~. Since the distribution of 
these quantit ies is unknown, this equation can serve 

as only a ra ther  crude indication of the reliability of 
a sign determination.  

N u m e r i c a l  t e s t  

The validi ty of the procedure described above was 
tested by applying it to a two-dimensional non-centro- 
symmetr ic  s t ructure  which consists of four equal a toms 
placed in positions: 

x 1 ~ 0 ,  Y l = 0 ;  x 2 = ~ v ,  Y 2 = ~ v ;  
x a = ~ ,  Y 3 =  1 1 .  = 9 = 0 Tg, X4 T~, Y4 ~ "  

Equat ion  (16) was used with A = 8 and B = ½. In  
this case we have 

2 ]EI-IIEH2EHI+H2[ COS ~H1, He 

,~ 8(]EHI+KI~--½)(IEH~_KI2--~)([EKI~--½) K. (35) 

These values of A and B minimize a 2 for infinite nl~-. 
In  the calculation the max imum values of [h[ and Ik] 
were 7; all possible terms subject to this restriction 
were used. This equation was applied to sixteen dif- 
ferent  combinations H1, He; the results are sum- 
marized in Table 1. The values of a ~ given in the last 

Table 1. 2[EH1EH2E_HI_m[ cos 9H1, H2 

(hk)l (hk)2 True value Equation (35) nit a ~ 
11 1] 1.95 2.09 169 0.35 
11 34 4"44 4"02 110 0"55 
11 23 3"55 2"99 132 0"45 
l l  45 2-06 2"18 90 0-67 
l i  12 1"12 0"88 156 0-38 
23 34 7.90 9"43 90 0-67 
22 12 6.70 6-56 132 0-45 
22 23 1.53 1-36 110 0.55 
l l  41 5.16 5.13 140 0.43 
11 32 2-65 2-42 143 0-42 
11 50 2.30 2.25 126 0-48 
l l  23 1.30 1.18 144 0-42 
11 15 4.85 4.99 129 0.47 
11 06 2-99 3.51 126 0.48 
l l  24 1.69 1.81 132 0-45 
06 17 1.66 2.47 112 0.54 

column of Table 1 are computed from equation (24), 
which, in this case, reduced to ~2 = 60/nK. The root 
mean value of 32 is 0.70 whereas the root-mean-square  
deviation between the numbers  in the second and third 
columns of Table 1 is 0.50. 

The first eight numbers  in the fourth column of 
Table 1 were used to compute phase angles of in- 
dividual s t ructure  factors. The phase angles of 11 and 
34 were put  equal to values which placed the origin 
at  a tom 1 and the remaining five phase angles were 
computed by a least-squares procedure from the eight 
equations. The result are summarized in Table 2. The 
mean absolute deviation between the true and com- 
puted phase angles (excluding assumed phase angles) 
is 15.4 ° . 

I t  is to be noted t ha t  this procedure will give un- 
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Table 2. Comparison of true and computed 
phase angles 

True phase Computed phase 
(hk) angle (o) angle (o) 

11 -- 16.2 -- 16-2 
35 24.5 24.5 
45 7-7 29-6 
56 41.5 46.1 
2~ 20.6 16.9 
23 41.3 72.3 
12 3.6 19.5 

sat isfactory results in m a n y  circumstances. I t  is 
a lways necessary to determine the signs of the ~H1, H~ 
by making use of the redundancy  of equations. An 
error made  at  this step could introduce serious errors 
in the individual phase angles. In  more complex 
structures,  with correspondingly larger values of a, 
this danger  becomes greater.  On the  other hand,  one 
would expect tha t  the  use of a larger group of related 
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s t ructure  factors  would improve mat te r s  because of 
the increased redundancy.  
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T h e  C r y s t a l  a n d  M o l e c u l a r  S t r u c t u r e  o f  

2 : 5 - D i a m i n o  - 4 -  M e r c a p t o  - 6 - M e t h y l  - P y r i m i d i n e  

BY E. N. M_ASLEN, MISS D. E. JUKES AND C. J .  :B. CLEWS 

Department of Physics, University of Western Australia, Nedlands, Western Australia 
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The crystal and molecular structure of 2:5-diamino-4-mercapto-6-methyl-pyrimidine has been 
determined from projections about the a and c axes of the crystal. The space group is P21/n, and 
the unit cell dimensions are a ---- 17.036, b ---- 10.045, c = 4.339 A, fl ---- 90 ° 56'. The hkO projection 
has been solved by locating the heavy atom in a modified Patterson synthesis, and refined by 
calculation of successive difference syntheses. The z coordinates have been determined from the 
modified Okl Patterson, using steepest-descents methods for the refinement of the atomic coor- 
dinates. 

1. Introduction 

Following the invest igat ion of the  4:5-  and 4:6-  
diamino-pyrimidines (Clews & Cochran, 1949; Whi te  
& Clews, 1956), a s tudy  was made  of the s t ructure  of 
2 :5-diamino-4-mercapto-6-methyl-pyr imidine  to ob- 
ta in  information on the  type  of hydrogen bonding 
in the  amino groups in this class of diamino pyrimidine,  
and on the positions of the  other  hydrogen a toms in 
the  molecule. The results indicated the  existence of 
a mixed s t ructure  among these atoms. 

The calculated s t ructure  gave a marked ly  non- 
p lanar  pyrimidine ring, but  this is shown to have  
resulted from the inabil i ty of the  method of s t ructure  
de terminat ion  to cope adequate ly  with the  aniso- 
t r opy  and a s y m m e t r y  of the  thermal  motions in the 
molecule. 

2. Exper imenta l  

The crystals  of 2:5-diamino-4-mercapto-6-methyl-  

pyrimidine were kindly provided by  Dr  F. L. Rose of 
I .C.I.  Limited,  Manchester,  England,  who obtained 
sat isfactory crystals, in the form of fine needles, by  
recrystal l ization f rom cellosolves. 

These crystals were shown by  Weissenberg photo- 
graphs to be monoclinic, space group P21/n. Using the 
0-method of Weisz, Cochran & Cole (1948), the  100 
and 010 spacings were measured with Cu K a  radia- 
tion, and  the 015 spacing with Cu K a  r The fl angle 
was obtained from the distance between two sets of 
001 reflexions on Weissenberg photographs  of a crystal  
twinned about  the  h00 plane. F rom these measure- 
ments  the  latt ice paramete rs  were calculated to be 

a - -  17.036+0.006, b -- 10.045±0.004, 
c = 4 -339±0 .002 /~ ,  

fl = 90 ° 5 6 ' ± 6 ' .  

(~(Cu K a ,  mean  value) = 1.5418/~, 
;t(Cu K ~ )  = 1.5405 J~.) 


